25 research outputs found

    A scanning gate microscope for cold atomic gases

    Full text link
    We present a scanning probe microscopy technique for spatially resolving transport in cold atomic gases, in close analogy with scanning gate microscopy in semiconductor physics. The conductance of a quantum point contact connected to two atomic reservoirs is measured in the presence of a tightly focused laser beam acting as a local perturbation that can be precisely positioned in space. By scanning its position and recording the subsequent variations of conductance, we retrieve a high-resolution map of transport through a quantum point contact. We demonstrate a spatial resolution comparable to the extent of the transverse wave function of the atoms inside the channel, and a position sensitivity below 10nm. Our measurements agree well with an analytical model and ab-initio numerical simulations, allowing us to identify a regime in transport where tunneling dominates over thermal effects. Our technique opens new perspectives for the high-resolution observation and manipulation of cold atomic gases.Comment: 5 + 6 pages, 4 + 5 figure

    Connecting strongly correlated superfluids by a quantum point contact

    Full text link
    Point contacts provide simple connections between macroscopic particle reservoirs. In electric circuits, strong links between metals, semiconductors or superconductors have applications for fundamental condensed-matter physics as well as quantum information processing. However for complex, strongly correlated materials, links have been largely restricted to weak tunnel junctions. Here we study resonantly interacting Fermi gases connected by a tunable, ballistic quantum point contact, finding a non-linear current-bias relation. At low temperature, our observations agree quantitatively with a theoretical model in which the current originates from multiple Andreev reflections. In a wide contact geometry, the competition between superfluidity and thermally activated transport leads to a conductance minimum. Our system offers a controllable platform for the study of mesoscopic devices based on strongly interacting matter.Comment: 5 pages, 4 figures, 7 pages supplementar

    Connecting strongly correlated superfluids by a quantum point contact

    Get PDF
    Point contacts provide simple connections between macroscopic particle reservoirs. In electric circuits, strong links between metals, semiconductors or superconductors have applications for fundamental condensed-matter physics as well as quantum information processing. However for complex, strongly correlated materials, links have been largely restricted to weak tunnel junctions. Here we study resonantly interacting Fermi gases connected by a tunable, ballistic quantum point contact, finding a non-linear current-bias relation. At low temperature, our observations agree quantitatively with a theoretical model in which the current originates from multiple Andreev reflections. In a wide contact geometry, the competition between superfluidity and thermally activated transport leads to a conductance minimum. Our system offers a controllable platform for the study of mesoscopic devices based on strongly interacting matter.Comment: 5 pages, 4 figures, 7 pages supplementar

    Band and correlated insulators of cold fermions in a mesoscopic lattice

    Get PDF
    We investigate the transport properties of neutral, fermionic atoms passing through a one-dimensional quantum wire containing a mesoscopic lattice. The lattice is realized by projecting individually controlled, thin optical barriers on top of a ballistic conductor. Building an increasingly longer lattice, one site after another, we observe and characterize the emergence of a band insulating phase, demonstrating control over quantum-coherent transport. We explore the influence of atom-atom interactions and show that the insulating state persists as contact interactions are tuned from moderately to strongly attractive. Using bosonization and classical Monte-Carlo simulations we analyze such a model of interacting fermions and find good qualitative agreement with the data. The robustness of the insulating state supports the existence of a Luther-Emery liquid in the one-dimensional wire. Our work realizes a tunable, site-controlled lattice Fermi gas strongly coupled to reservoirs, which is an ideal test bed for non-equilibrium many-body physics.Comment: 8 + 10 pages, 5 + 7 figure

    Long-range fiber-optic earthquake sensing by active phase noise cancellation

    Full text link
    We present a long-range fiber-optic environmental deformation sensor based on active phase noise cancellation (PNC) in metrological frequency dissemination. PNC sensing exploits recordings of a compensation frequency that is commonly discarded. Without the need for dedicated measurement devices, it operates synchronously with metrological services, suggesting that existing phase-stabilized metrological networks can be co-used effortlessly as environmental sensors. The compatibility of PNC sensing with inline amplification enables the interrogation of cables with lengths beyond 1000 km, making it a potential contributor to earthquake detection and early warning in the oceans. Using spectral-element wavefield simulations that accurately account for complex cable geometry, we compare observed and computed recordings of the compensation frequency for a magnitude 3.9 earthquake in south-eastern France and a 123 km fiber link between Bern and Basel, Switzerland. The match in both phase and amplitude indicates that PNC sensing can be used quantitatively, for example, in earthquake detection and characterization.Comment: 7 pages, 4 figure

    Quantized conductance through a spin-selective atomic point contact

    Full text link
    We implement a microscopic spin filter for cold fermionic atoms in a quantum point contact (QPC) and create fully spin-polarized currents while retaining conductance quantization. Key to our scheme is a near-resonant optical tweezer inducing a large effective Zeeman shift inside the QPC while its local character limits dissipation. We observe a renormalization of this shift due to interactions of a few atoms in the QPC. Our work represents the analog of an actual spintronic device and paves the way to studying the interplay between spin-splitting and interactions far from equilibrium.Comment: see also companion paper arXiv:1907.0643

    Accelerated physical emulation of Bayesian inference in spiking neural networks

    Get PDF
    The massively parallel nature of biological information processing plays an important role for its superiority to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.Comment: This preprint has been published 2019 November 14. Please cite as: Kungl A. F. et al. (2019) Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks. Front. Neurosci. 13:1201. doi: 10.3389/fnins.2019.0120
    corecore